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ABSTRACT 

We establish a sharp upper bound for growth in the sequence sk(T) :---- the 

number  of k-types consistent with T, for T .~-categorical and w-stable. 

Introduction 

Let T be a complete v-categorical, w-stable theory in a countable language. 

For each positive integer k, let sk(T) denote the number of complete k-types 

consistent with T. By the Ryll-Nardzewski Theorem, sk(T) is finite for all k 

and equals the number of AutM-orbits  on M k, where M is the countable model 

of T. In general, the sequence sk(T) can grow arbitrarily fast [C]. In section 

1 we establish a sharp upper bound for the growth in sk(T) for ~v-stable, w- 

categorical T. Our proof uses the structure theory for w-categorical, v-stable 

structures developed by Cherlin, Harrington and Lachlan in [CHL]. Intuitively 

speaking, what we show is that the process of building a strucure of positive rank 

from strictly minimal components cannot increase the "order" of the growth 

rate. Specifically, it follows from our results that given any w-categorical, w- 

stable theory T, there is a strictly minimal theory T t such that sk(T') eventually 

dominates sk(T). 

* This paper forms part of the author's doctoral dissertation written at the Univer- 
sity of Maryland under the direction of David W. Kueker. 
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An example due to E. Hrushovski shows that the hypothesis of w-stability 

cannot be weakened to just stability. 

In section 2 we apply the methods developed in the proof of the main Theorem 

(1.1) to bound the growth in 

a k  : =  m a x { l a c l ( A ) l  : IAI - k,A C_ M, A4 ~ T}, 

and in section 3, we obtain a more restrictive bound for sk(T) when T satisfies 

an additional hypothesis. 

Our notation generally follows [CHL]. Throughout M is a countable model of 

a theory T for the language L. We assume that L contains no function symbols. 

For the purpose of counting types, this assumption is harmless, since for any 

w-categorical theory T, there is a purely relational theory T ~ such that for all 

k, sk(T') = sk(T). If A C_ M then . /~m stands for the canonical expansion of . ~  

to a structure for the language L(A) which adds constants for the elements of 

A, MIA = (a, R~IA)~EL with R ~  IA = {a E A:  M V ~(a)}, S,,(A) denotes the 

set of all complete L(A)-n-types consistent with Th(MA),  S(A) = One~,Sn(A) 

and S(A, A4) consists of all types in S(A) that are realized in M .  We write 

S(T) for S(0). Following [CHL], we define an ex tens ion  by def in i t ions  of 

M as follows. If E is a 0-definable equivalence relation on M" for some n E 

w, then the E-ex tens ion  of M is the structure .A/t* over the language L* = 

L O {U, V} with universe M O MalE, and interpretations U ~ "  = M, V M" = 

{ (a ,a /E)  : a e M ' } , R  ~* = R ~ ,  and c "~" = c ~ for all relation symbols R 

and constant symbols c in L. Type always means complete type and rank and 

degree, abbreviated (rk, deg), always means Morley rank and degree. We write 

s•(A, B) for the number of k-types over A realized by elements of B in A4. 

1. Bounding sk(T) 

The main result of this paper is the following: 

THEOREM 1.1: Let T be w-categorical and w-stable. Then there is a natural 

number m such that t'or a/l k > 1, sk(T) < 2 'nk2. 

Our proof of this Theorem depends on a sequence of lemmas. Lemmas 1.3 and 

1.4(i) below are well-known. 
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LEMMA 1.2: For a11 k > 1, 

(i) sk(.A"f) ~ maXlA[=k_ 1 sl(A,M)" sk-~(,~t); and 

(ii) sk(Ad) < Sl(.M)" k-1 __ IX/= 1 maXlA[=i s l ( A , M ) .  

Proo~ (i) Let ~ x , ' " ,  ask-~(M) be realizations of the distinct (k - 1)-types of M 

and for each 1 < i < sk-l(A4),  let hi,1 < j < s~(rng(Si), A/I) be realizations of 

the distinct 1-types over 8i in M. Then 

{fi/"b~ : 1 < i  < sk - l (A4) , l  <_j <_ sa(M, rng(fii))} 

is a complete set of realizations of the distinct k-types of .M. To see this, let 

= (CA,'' ' ,ck) E M k. There is an automorphism f of .M taking (c l , . . .  ,ck-1) 

onto ai for some i and an automorphism g of .M fixing ai and taking f (ck)  to 

some ~.  The composition g o f maps ~ to ~ / ~ .  

(ii) is proved by induction on k, using (i) for the induction step. | 

LEMMA 1.3: Let E be a O-deIJnable equivalence relation on M n and let .£4" be 

the E-extension of .M. Let L* be the language of.M*. 

(i) The restriction to M of each automorphism of Ad* is an automorphism of.If4, 

and each automorphism of A,4 extends uniquely to an automorphism of .£4*. 

(ii) Let A C_ Mk,1  < k < w. Then A is definable in .bt* iff A is definable in Ad 

and the rank of A is the same whether it is computed in .h~ or in .hd*. 

(iii) .h4* is w-categorica2 and w-stable. 

LEMMA 1.4: (i) Let A C_ M be nonempty and definable. I£n E oJ and B C_ A n, 

then B is definable in M iff B is definable in MIA. Also, (rk, deg)(B) is the 

same whether it is computed in M or in MIA.  

(ii) If A C_ M is definable, then for ali n E w and all ?z, b E A n, if  t P ~ l a ( a  ) = 

tp,~la(b ) then t p ~ ( a )  = tp~a(b ). I rA  is O-definable, the converse is also true. 

(iii) Suppose A C_ M is O-definable, E is a O-definable equivalence relation on 

A", and 7 9* is the E-extension of MlA.  Then there is a O-definable equivalence 

relation E'  on M "  and an E'-extension M* of .M such that in M*[(A U A n / E )  

and 79* exactly the same relations are O-detlnable. 

Proof: (i) This is Lemma 1.4 of [CHL]. 

(ii) If t p ~ ( a )  # t p,~(b), then there is some 0-definable relation R on M such 

that  R holds of a but not of b. Hence tP,~lA(a ) # tp~lA(b ). If tp,,a(a) = tp~(/~), 

then there is an automorphism f of .M taking a to b. Assuming A is 0-definable, 
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f fixes A (setwise) and from the definition of .MIA it follows that f l A  is an 

automorphism of ,h4 [A and thus tP~lA(a ) = tp.~ iA(b). 

(iii) Since A is 0-definable, E can be extended to a 0-definable equivalence 

relation E '  on M n by putting all elements of M n - A n into one class. Let .M* 

be the E'-extension of ,hi[. Then exactly the same relations are 0-definable in 7 9* 

and .hd*I(A O A"/E ' ) .  I 

LEMMA 1.5: I f  M is strongly minimal, there is a q < w such that for all non- 

empty tinite subsets A C_ M, lacl(A)l < qlAI. 

Proof'. First assume that .h4 is strictly minimal. Consider the structure H ~  = 

< M, R H~ >/e~,, where 

n H~ = { ( a l , . . . , a i , b ) :  b E ac l ( a l , . . . , a / ) ) .  

By [CHL, 2.1], H m  ~ H~, where Aut(P)  = AG(0J, q), PG(~,  q) or Sym(P).  In 

the first two cases, the algebraic closure of a set A is the affine (resp. projective) 

span of A and thus ]acl(A)l _< qlAI, where q is the characteristic of the associated 

field. In the last case, acl(A) = A. Now any isomorphism f of H ~  onto H~, 

must take acl(A) onto acl(f[A]) in P.  Therefore, since the result holds in P it 

must hold in AJ as well. 

Returning to the general case, define E on M by E(a, b) iff acl(a) = acl(b). 

Since rk(.hd) = 1, for a, b E U - acl(0), E(a, b) holds iff a E acl(b) iff b E acl(a); 

otherwise E(a, b) holds iff {a, b} C C_ acl(0). Therefore there is some f < w such 

that for all a E M, [a/E[ < f .  Let .At* be the E-extension of )td. We verify that 

~ *  [(M - ac l (0 ) ) /E  is strictly minimal. Suppose S c__ (M - acl(O))/E is infinite, 

coinfinite and definable in Ad*I(M - acl(0))/E. By Lemma 1.4(i), S is definable 

in ,£4". Then US' is an infinite, eoinfinite subset of M - a c l ( 0 )  definable in .hJ* and 

therefore in .M, by Lemma 1.3(ii). This contradicts the strong minimality of .hi[. 

To show strict minimality, suppose a / E  E acl(b/E), for some a, b E M - acl(O), 

with algebraic closure computed in AJ*[(m - acl(0))/E. By Lemma 1.4(ii), the 

same holds with algebraic closure computed in .M. Since each E-class is finite, 

Lemma 1.3(i) implies a E acl(b) and thus a / E  = b/E. 

Let A _C M be finite and non-empty and let A' = A - acl(0). Assume that 

A' ~ {~ (otherwise acl(A) = acl(0)). We show that 

acl(A) = acl(A') = U{blE E (M - acl({O))/E : b/E E acl(A' /E)} U acl(0). 
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This is sufficient, since by the argument above, there is a q < w such that 

[acl(A'/E)] <_ qlA'/EI <_ qlAI. Therefore 

[ 0 {b/E • (M - acl(O))/E : b/E • acl(A'/E)} 0 acl(O)l < f(qlAI + 1) 

(with f and q independent of A), so q can be chosen large enough to give the 

result. 

Suppose b • a c l ( A ' ) -  acl(0). If b/E q~ acl(A'[E), there are distinct {bi : 

i < w} _C M - acl(0) and automorphisms {]i : i < w} of M such that for 

each i, fi fixes A ' / E  pointwise and f i (b/E) = bilE. For each i, fi = ]i[M is an 

automorphism of .£4 and we may assume that fi(b) = bi. Write A' = { a l , . . . ,  ak}. 

Since ]U A'/E[ < w, there must be some c l , . . . , ck  e UA' /E such that for 

infinitely many i, fi(aj) = cj for all 1 <_ j ___ k. This implies that for infinitely 

many i, (a~, . . .  ,ak, b) has the same type as (c~,. . .  ,ck, bi), which contradicts 

b • ac l (a l , . . .  ,ak). | 

LEMMA 1.6: Let M be a countable w-categorical, w-stable structure and let N 

be an infinite definable subset of M. Then there is a natural number q such that 

for all finite non-empty subsets A C_ M, the number of 1-types over A realized 

by elements of N in the structure Ad is less than or equal to q]AI. 

Proof: We argue by induction on rk(N). 

Base (rk(N) = 1): To begin with, we assume 

(*) N is an atom of M .  

By the finite equivalence relation theorem [CHL, 1.6] there is a 0-definable equiv- 

alence relation F on N such that [N/F I < w and each of the F-classes is finite 

or strongly minimal. From (*) it follows that there are no finite F-classes. Let t 

be the number of F-classes, let C be an F-class and let A C_ M be finite. Since 

C is strongly minimal, only one non-algebraic 1-type over A is realized in C. Let 

S = acl(A) N C. Since (*) implies acl(0) ¢~ g = 0, S = {c • C :  tp(c/A) forks 

over 0}. Write A = {a~,. . . ,alAi} and let a = (a l , . . . , a lAi) .  By [CHL, 1.3(i)] 

there are at most rk(a/0) algebraically independent elements in S. By [CHL, 

1.2], rk(a/0) <_ rk(MIAI) = [Alrk(M ). Let m = rk(M) and let B C_ S satisfy 

[B[ _< mIA [ and acl(B) N C = S. By Lemma 1.4(ii), acl(B) N C is contained in 

the algebraic closure of B computed in A4 [C. By Lemma 1.4(i), A4 [C is strongly 

minimal. Thus by Lemma 1.5, IS[ _< qm[A[ for some q • w, independent of A. 

Hence there are at most qm[ll + 1 1-types (of M )  over A realized in C and thus 
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in all of N there axe at most t(r '~DAI + 1) realized, where r is the maximum of 

the q's obtained for the F-classes. Since t, r and m are independent of A, q can 

be chosen large enough to give the result. 

Now remove the assumption (*). If N is definable over a, then it is the union of 

a finite number of atoms of (.A4, ~). The previous argument applies to the infinite 

atoms, and since there are only finitely many elements in the finite atoms, the 

result follows for N and (.M,a), which implies the result for N and 3,4, since 

Aut(.M, a) _< Aut(.M). 

INDUCTIVE STEP: Let n = rk(N) > 1. We first show that we can reduce to the 

case in which N is an atom of .M and deg(N) = 1. Expand to :P = (A'I, ~) where 

N is definable over a. As in the base case, the result for ~ and N will imply the 

result for N and .M. Again by the finite equivalence relation theorem there is a 

0-definable equivalence relation F on N such that ]N/F] < w and each F-class 

has degree 1 or rank less than n. The result holds by induction for F-classes of 

positive rank less than n and the union of the finite F-classes is finite. Therefore 

it suffices to prove the result for an infinite F-class G with (rk,deg)(G) --- (n, 1). 

To make the final reduction, introduce one more parameter, say g, to define G 

in P and decompose G into atoms of (T), g). 

Let N C_ M be as above and let A C M be finite and non-empty. By the proof 

of the Coordinatization Theorem [CHL, 4.1], there is a 0-definable equivalence 

relation E on N k for some k, an E-extension .hf* of A4]N, a rank one atom 

C C N* and a formula ~(x, y) in the language of .Af* such that each element of 

g belongs to at least one set ~o(x, c)Z',c E C, and for all c E C, rk(~(x, c)) = n - 1  

(computed in A/'*). Since N is 0-definable in .M, by Lemma 1.4(iii) there is an 

E'  extending E to M k and an E'-extension A4* of M such that Af* has the same 

0-definable relations as A4*I(NUNk/E). By Lemma 1.4(i), C is definable in A4* 

and has rank 1. By induction, the number of 1-types over A (of A4*) realized 

in C is less than or equal to q]A[ for some q independent of A. Thus among the 

sets ~(x, c) At" there are at most qlAI conjugacy classes over A. Since by Lemma 

1.4(i) each of the sets ~(x, c) "~" is definable of rank n - 1 in A'/*, by induction for 

each c E C there is qc such that there are at most q!AI 1-types (of M*) realized 

in T(x, c) ~'*. Since C is an atom, qc is independent of c. Thus the number of 

1-types (of .M* ) over A realized in N is less than or equal to (q~q)lAI. By Lemma 

1.3(i) this bound is valid in A4 as well. II 
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Proof of Theorem 1.1: Let M ~ T. Applying Lemma 1.6 with N = M together 

with Lemma 1.2(ii) gives immediately for all k > 1, 

k-1  
k 2 sk(.A4) < sl(.A4)" H q  / < sl( .M) .q , for some q E w. 

i=l  

Thus choosing m > log2(sl(.h,4 ) • q), the result follows. | 

Remarks: (1) If T is the (strictly minimal) theory of an infinite dimensional 

affine space over a finite field, then by [M, 3.4] sk(T) > qp(k) for all k, where 

q is the characteristic of the field and p is a quadratic polynomial with leading 

term k2/4. Thus the bound in Theorem 1.1 is sharp, since for each m there is 

a (prime) q such that for any quadratic p(k) = k2/4 + bk + c, qp(k) eventually 

dominates 2 mk~. 

(2) Chris Laskowski and Udi Hrushovski have shown (personal communica- 

tion) that by modifying the construction described in [HI, one can obtain stable, 

but not w-stable theories whose sequences sk(T) grow arbitrarily fast. Thus we 

cannot weaken the stability requirement in Theorem 1.1. | 

2. Algebraic Closure 

In proving Theorem 1.1, we bounded the number of 1-types over a k-element 

subset of A4 (Lemma 1.6). To get the induction started in the proof of Lemma 

1.6, we needed the fact that we could bound the size of the algebraic closure of a 

k-element subset of a strongly minimal structure .M (Lemma 1.5). This followed 

easily from the Classification Theorem [CHL, 2.1] for strictly minimal geometries. 

We now show, using a similar inductive argument, that Lemma 1.5 holds for all 

w-categorical, w-stable structures. 

THEOREM 2.1: Let T be w-categorical and w-stable and let .AA ~ T. Then there 

is q < w such that for all non-empty finite subsets A C_ M, ]acl(A)] < qIAI. 

By considering N = M, the Theorem follows directly from: 

LEMMA 2.2: Let .A4 be a countable w-categorical, w-stable structure and let N 

be an infinite definable subset of M. Then there is a natural number q such that 

/'or all finite non-empty subsets A C_ M, [acl(A) f3 N[ < qlAl. 

Proof." As in the proof of Lemma 1.6, we argue by induction on rk(N). The base 

case, rk(N) = 1, is established in the proof of Lemma 1.6. So assume rk(N) > 1. 
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The reduction to the case in which N is a degree 1 atom works as before. Now 

let C, N* and the coordinatizing sets T(x, c) "~° , c E C be defined as in the proof 

of Lemma 1.6. By induction, it suffices to show: 

(*) acl(A) N N _C {acl(A) M ~p(x, c) z"  : c • acl(A) N C}. 

Let a • acl(A)N N. First note that, though we did not need this fact in the proof 

of Lemma 1.6, the sets ~(x, c) At* obtained from (the proof of) the [CHL] Coordi- 

natization Theorem have the property that each a • N belongs to a positive but 

finite number of the sets q0(x, c) At* , c • C. Therefore a • ~(x, c) ~r* , some c • C, 

with c • acl(a) (computed in A/*, using the fact that C is 0-definable). But if 

c • acl(a) and a • acl(A), then c • acl(A) and (*) follows. 1 

3. Theories  with Only Indiscernible Strictly Minimal  Sets  

In this section, we improve the bound in Theorem 1.1 for a special subclass of 

w-categorical, w-stable theories. 

THEOREM 3.1: Let T be an w-stable, w-categorical theory and let M be the 

countable mode /o f  T. Suppose that every strictly minimal set definable in any 

extension by definitions of M is indiscernible. Then for some c E w, sk(T) <_ 

ck(k!) rk(M)/'or all k >_ 1. 

Considering N = M and using Lemma 1.2, it suffices to establish: 

LEMMA 3.2: Let M be as in Theorem 3.1 and let N be an infinite definable 

subset of M. Then there is c E w such that for all finite non-empty subsets 

A C_ M, the number of 1-types over A realized by elements of N in the structure 

M is less than or equal to clAI rk(N). 

Proof." Once again, we prove this by induction on rk(N). The base case works 

essentially as in the proof of Lemma 1.6. First, the proof of Lemma 1.5 (with mi- 

nor modifications) shows that if A4 is strongly minimal and has only indiscernible 

strictly minimal sets attached, then for all A C_ M, [A[ < w, [acl(A)[ < fiA[, with 

f E w as defined in the proof. Now follow the proof of Lemma 1.6. Assuming that 

N is an atom of A4, decompose N into strongly minimal components Co , . . . ,  Cm 

and see using [CHL 1.3(i),1.2] that  for any finite A C_ M, acl(A) N Ci has a basis 

of cardinality < ]A]. rk(M) for each i < m. Thus [acl(A) N Vii < fi" IA[" rk(M) 

each i, and 

lacl(A) n N I < m .max( f / ) .  IAI • rk(M). I_~ra 
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Removing the assumption that N is an atom works as before, using the fact that 

(.M, a) still satisfies the hypotheses of the Theorem. 

In the inductive step, the preliminary reduction works as before. Then with the 

sets C and qo(x, c) Af* defined as in the proof of Lemma 1.6, we have by induction 

for each finite A C M, 

ISl(A,C)I _< f-IA[ and ISl(A,~(x,c)~f*)l <_ d. IAI "-~, 

all c E C, for some f , d  E w. Then IS~(A,N)I _< f .  IAI" d.  IAI "-~ = f d .  IAI". 
| 

Questions: (1) Do either of the two Theorems 1.1, 2.1 have (partial) converses? 

That is, does "slow" growth in either sk(T) or ak(T) = maxlAt=k [acl(A)[ imply 

that a stable w-categorical theory is w-stable? The hypothesis of stability is 

certainly necessary here. Consider, e.g., T = Th(Q, _<). Then sk(T) < (2k)!. 

(2) For stable, w-categorical T can we bound sk(T) explicitly in terms of ak(T)? 

This is true for the theories constructed in [H], and our arguments suggest that 

it should be possible at least in the w-stable case. | 
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